
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/379838925

Security Guidance of auditing smart contract on Blockchain and Distributed

Ledger system

Technical Report · April 2024

DOI: 10.13140/RG.2.2.21273.02405

CITATIONS

0
READS

298

1 author:

Christophe Ozcan

C4A - CRYPTO4ALL

1 PUBLICATION 0 CITATIONS

SEE PROFILE

All content following this page was uploaded by Christophe Ozcan on 16 April 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/379838925_Security_Guidance_of_auditing_smart_contract_on_Blockchain_and_Distributed_Ledger_system?enrichId=rgreq-706227a1e9fb6fb1a6cec1532a1a88ec-XXX&enrichSource=Y292ZXJQYWdlOzM3OTgzODkyNTtBUzoxMTQzMTI4MTIzNjUyMTI0NEAxNzEzMjU2NDg2NDcz&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/379838925_Security_Guidance_of_auditing_smart_contract_on_Blockchain_and_Distributed_Ledger_system?enrichId=rgreq-706227a1e9fb6fb1a6cec1532a1a88ec-XXX&enrichSource=Y292ZXJQYWdlOzM3OTgzODkyNTtBUzoxMTQzMTI4MTIzNjUyMTI0NEAxNzEzMjU2NDg2NDcz&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-706227a1e9fb6fb1a6cec1532a1a88ec-XXX&enrichSource=Y292ZXJQYWdlOzM3OTgzODkyNTtBUzoxMTQzMTI4MTIzNjUyMTI0NEAxNzEzMjU2NDg2NDcz&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christophe_Ozcan?enrichId=rgreq-706227a1e9fb6fb1a6cec1532a1a88ec-XXX&enrichSource=Y292ZXJQYWdlOzM3OTgzODkyNTtBUzoxMTQzMTI4MTIzNjUyMTI0NEAxNzEzMjU2NDg2NDcz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christophe_Ozcan?enrichId=rgreq-706227a1e9fb6fb1a6cec1532a1a88ec-XXX&enrichSource=Y292ZXJQYWdlOzM3OTgzODkyNTtBUzoxMTQzMTI4MTIzNjUyMTI0NEAxNzEzMjU2NDg2NDcz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christophe_Ozcan?enrichId=rgreq-706227a1e9fb6fb1a6cec1532a1a88ec-XXX&enrichSource=Y292ZXJQYWdlOzM3OTgzODkyNTtBUzoxMTQzMTI4MTIzNjUyMTI0NEAxNzEzMjU2NDg2NDcz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christophe_Ozcan?enrichId=rgreq-706227a1e9fb6fb1a6cec1532a1a88ec-XXX&enrichSource=Y292ZXJQYWdlOzM3OTgzODkyNTtBUzoxMTQzMTI4MTIzNjUyMTI0NEAxNzEzMjU2NDg2NDcz&el=1_x_10&_esc=publicationCoverPdf

Security Guidance of auditing smart contract on

Blockchain and Distributed Ledger system.
Author: Christophe André Ozcan (Crypto4All & Standard ISO/TC307 Expert from AFNOR)

Contact: christophe.ozcan@crypto4all.com

Date: 31 mars 2024

I. Scope

Auditing Smart Contract third party evaluate the security risks of deploying protocols using

smart contracts. To review and verify the project specifications and source code with a detailed

focus on weaknesses, potential vulnerabilities, and overall security the procedure of findings

with solutions that may mitigate future attacks or loopholes must be provided by auditors.

The mission of this document is to define the different types of approaches and detections,

ranging from manual, static, and dynamic analysis, as well as formal verification, to ensure that

a protocol using smart contracts is checked against known attacks and common potential

vulnerabilities.

A smart contract audit involves security experts to scrutinize the source code created to
underwrite the functions of the smart contract often called a decentralized protocol.

Smart contract audits are usually conducted by a third-party company to ensure that the
source code is reviewed as thoroughly as possible. Depending on the complexity of the smart
contract, companies may choose to engage the services of a specialist smart contract team to
conduct the audit without being sure that the auditing process is well conducted.

The importance of getting the smart contract code correct and secure before it is deployed is
very important even more due to the immutability of blockchain and distributed ledger
system. The implications of activating a smart contract that has not been properly audited
could be severe for any projects.

The contribution helps to the emerging literature on audit data analytics (ADA) by proposing a
new approach involving audit methodology, audit analytic tools and smart audit procedures
which are enabled by blockchain technology. Besides, this contribution presents a discussion
regarding the effect of smart audit procedures on audit quality and the public/private interest
regarding the role of emerging technologies in the traditional system audit process bring by a
new emerging cybersecurity market.

https://crypto4all.com/
https://www.iso.org/fr/committee/6266604.html
https://www.afnor.org/en/

TABLE OF CONTENTS
I. Scope .. 1

II. Methodology .. 2

1. Audit Preparation: Agreeing on a specification document. .. 3

2. Security Level of References ... 3

1. List of Vulnerabilities and checkpoints: ... 5

2. Manual or Static Analysis Review .. 6

3. Automated Analysis ... 7

4. Formal Verification Analysis .. 7

III. External publications references ... 9

II. Methodology

A Smart Contract Audit (SCA) is an audit of a distributed ledger system involving smart
contract operations and related control processes. It aims to ensure the security, reliability,
compliance, performance, and interoperability of smart contracts. Auditing a distributed
system like a smart contract differs from auditing a centralized system due to the unique
characteristics of peer-to-peer networks, distributed ledgers, Distributed Virtual Machines
(DVMs), and consensus mechanisms.

The objectives of a smart contract audit include evaluating the reliability of data from smart
contracts that impact financial statements, assessing the effectiveness of smart contract
governance controls, ascertaining compliance with applicable laws, policies, and existing
standards, and ensuring the performance and interoperability of the smart contract within
the broader ecosystem.

The audit process follows the following steps:

❖ Evaluate the reliability of data from smart contract which have an impact on financial
statements.

❖ Evaluate effectiveness of Smart contract governance controls to ensure the distributed
systems are functioning as intended.

❖ Ascertain compliance with applicable laws, policies, and existing standards.

1. Audit Preparation: Agreeing on a specification document.

The audit process begins by agreeing on a detailed specification document. This document

outlines the project's functional requirements, smart contract architecture, structural choices,

and logical build process. It serves as a reference for auditors to ensure that the smart contract

works as intended. The specification should include information on variables, functions, and

their interactions within the contract.

• Gather all relevant information: Provide auditors with the smart contract code,
technical specifications (readme file …), and any relevant documentation. The more
information the audit has, the better he can understand the code purpose and potential
vulnerabilities.

• Define the scope of the audit: Specify which parts of the smart contract to audit (e.g.,
entire contract, specific functionalities). Focus on critical areas like financial
transactions, access control, governance, performance and sensitive data handling.

• Set clear expectations: Outline the desired deliverables from the audit (e.g., detailed
report, severity levels of vulnerabilities). This ensures both parties are on the same page
about the audits.

• Auditors review the project's documentation, including specifications, design
documents, test plans, and implementation details. They verify that the documentation
accurately reflects the implemented code and that it aligns with industry best practices.

2. Security Level of References

Severity levels in audit reports typically classify security findings into distinct tiers, commonly

identified as Critical, High, Medium, Low and Informational.

To standardize the security evaluation made by auditors, we define the following terminology:

 Likelihood represents how likely a particular vulnerability is to be uncovered and

exploited.

 Impact measures the technical loss and damage of a successful attack.

 Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into four ratings: High, Medium, Low, Informational

respectively.

When determining severity, auditor is considering various factors, including:

1) Potential Impact: Assessing the worst-case outcome of a vulnerability, such as the

potential for catastrophic loss of all funds or unintentional compromise of user security,

which may be deemed as low severity.

2) Scope of Impact: Evaluating whether the vulnerability poses a risk to the overall

security of the entire application (critical) or if it only affects individual users (less

medium).

3) Attacker Incentive: Analyzing the cost-benefit ratio for an attacker. If the effort

required to exploit a vulnerability outweighs the potential gains, severity may decrease

from critical to high. However, this doesn't negate the existence of a vulnerability, as

non-economic motives for attacks (e.g., showcasing skills, personal vendettas) may still

be at play.

4) Complexity of Exploitation: Distinguishing between vulnerabilities exploitable by

unsophisticated attackers versus those requiring deep knowledge of sophisticated

attacks involving a specific attack scenario. The more intricate the attack, the less likely

it is for an attacker to exploit it.

The fin al rate is determined by likelihood and impact and can be classified into severity

categories accordingly to the following classification table. Every finding is assigned a severity

level from the following classification table.

Figure 1 - Security Severity Classification Table

1. List of Vulnerabilities and checkpoints:

Vulnerability Category Checkpoints

Arithmetical function Functional
Integer underflow/overflow

Floating Points and Decimal Precision

Access & Privilege Control Structural

Administrative functionality for control and
emergency handling

Restriction access for sensitive functions and
data

Ownership management of the contract

Rate limit for critical operations, permission to
contract state changes, and delay operations
for malicious/sensitive actions

Variable Limiting

Check Effect Interaction Pattern

Denial of Service Network

Unexpected Revert

Unbounded operations or block stuffing

Unbounded Loops

Miner or Node manipulation Network

Block Number Dependence

Timestamp Dependence

Transaction Ordering Or Front-Running

External Referencing Structural

Correct usage of the pull over push favor for
external calls

Correct usage of checks-effects-interactions
pattern to minimize the state changes after
external contract or call referencing

Avoid state changes after external calls

Error handling and logging events

Fallback function security

Race Conditions Structural

Reentrancy - unexpected state changes

Cross-function racing - attacks that using
different functions while share the same state

Low-level Call Structural
Code Injection by delegate call

Unsuited adoption on assembly code

Visibility Functional
Specify the correct external visibility of
variables and functions.

Interface implementation facilitating the
external smart contract interaction.

Proxy Structural
Specify the upgradeability management of the
smart contract code in the case of an emergency
patch or version should be deployed.

Incorrect Interface Functional
Ensure the defined function signatures match with
the contract interface and implementation

Execution consumption Structural

Ensure that the execution of the smart contract is
not consuming a lot of energy or gas to not impact
the efficiency of the smart contract and the entire
distributed network.

Dependencies Structural
Using updated smart contract dependencies for
which the smart contract is referring

Transaction Ordering Structural

Reception of Transactions calling different
functions which could interfere on the state of the
smart contract causing unexpected results and

potential security exploits

Unexpected reception of
funds

Structural

Smart contract could receive unexpected
cryptoassets without having the possibility to
withdraw them if it was not implemented causing
potential fund loss.

Ownership key management
Human

Management

A owner of smart contract having some privileged to
interact with private functions have a hug risk to lost
his private key impacting the ownership and more
often the state of the smart contract itself depending
on his manual external call actions to change the state
of a value.

Old Compiler Functional

A good practice is to use always before coding a smart

contract the last updated compiler version allowing to

resolve some common issues and helping the

developer to use some last recommendations

(depreciated function …)

2. Manual or Static Analysis Review

Auditors perform a manual or static analysis of the smart contract's source code. This involves

reading and analyzing the code line by line to identify potential bugs, vulnerabilities, and areas

where defensive programming practices can be applied. The analysis focuses on security-

oriented code review, checking for common vulnerabilities and flaws. It also includes a review

of code dependencies to ensure their security and relevance to the audited smart contract.

3. Automated Analysis

Security engineers and researchers use automated analysis tools to increase the chances of
detecting flaws and critical risksplaying a crucial role in auditing smart contracts. These tools
utilize various techniques, including static analysis, symbolic execution, and dynamic analysis,
to scan the smart contract code for known patterns of vulnerabilities.

Such tools are using by auditors to evaluate the security code without having a standard to evaluate

them. However, a comparative evaluation of automated analysis tools for solidity smart

contracts1 research paper can help auditors to select the relevant tools depending on their

audit scope.

4. Formal Verification Analysis

Formal verification involves performing an automated mathematical proof that the source code

fulfills a certain formal specification. It helps ensure the correctness of core components and

identifies any discrepancies between the technical specification and the actual implementation.

By using formal mathematical proofs, auditors can validate critical properties of the smart

contract, such as correctness, safety, and security.

5. Dynamic Analysis:

Smart contracts are tested in a simulated or controlled environment to observe their behavior

during runtime. Different transactions and inputs are executed to identify any unexpected

outcomes, vulnerabilities, or performance issues. Dynamic analysis helps assess the contract's

behavior under various scenarios and validate its intended functionality.

6. Security Testing:

Apart from the source code review, security testing techniques such as penetration testing and

vulnerability scanning are employed. These tests simulate real-world attack scenarios to

identify weaknesses or vulnerabilities that could be exploited by attackers. Penetration testing

involves actively trying to exploit vulnerabilities to gain unauthorized access or manipulate the

contract's behavior. Vulnerability scanning scans the contract for known security vulnerabilities

and weaknesses.

7. Integration and Interoperability Testing:

1 A Comparative Evaluation of Automated Analysis Tools for Solidity Smart Contracts

https://arxiv.org/pdf/2310.20212

Smart contracts often interact with external systems, APIs, or other smart contracts. Integration

and interoperability testing assesses how the smart contract integrates and interacts within the

broader ecosystem to identify any compatibility issues or vulnerabilities. This testing ensures

that the contract can effectively communicate and exchange data with other systems or

contracts without compromising security or functionality.

8. Performance Evaluation:

The performance of the smart contract is evaluated in terms of response times, transaction

throughput, resource consumption, and scalability. This evaluation helps identify bottlenecks,

performance limitations, and inefficiencies. It ensures that the contract can handle the

expected workload and operates efficiently within the distributed network.

9. Continuous Monitoring:

After the initial audit, continuous monitoring of the smart contract is essential to identify and

address any emerging security threats or vulnerabilities. Regular reviews and updates to the

contract's security controls, codebase, and compliance with evolving standards are crucial to

maintaining the contract's security over time.

The use of monitoring security tools should be recommended allowing companies to integrate

it by default.

10. Compliance Review:

The smart contract is evaluated for compliance with applicable laws, regulations, and industry

standards. Auditors ensure that the contract meets specific legal requirements, data protection

regulations, financial industry standards, or other relevant regulations. This review helps ensure

that the smart contract aligns with the regulatory landscape and mitigates legal risks.

11. Remediations and Recommendations trough a report

The audit process concludes with the issuance of a final report. This report outlines all critical,

medium, and low findings and provides actionable items and upgrade suggestions. Security

engineers, with their expertise in software engineering and security, outline ways to mitigate

vulnerabilities and enhance the overall security of the smart contract. The report also includes

recommendations for improvements in areas such as code quality, error handling, access

control, and compliance with industry standards.

III. External publications references

• ReJection: A AST-Based Reentrancy Vulnerability Detection Method, Rui Ma, Zefeng
Jian, Guangyuan Chen, Ke Ma, Yujia Chen - CTCIS 19

• MPro: Combining Static and Symbolic Analysis forScalable Testing of Smart Contract,
William Zhang, Sebastian Banescu, Leodardo Pasos, Steven Stewart, Vijay Ganesh -
ISSRE 2019

• ETHPLOIT: From Fuzzing to Efficient Exploit Generation against Smart Contracts,
Qingzhao Zhang, Yizhuo Wang, Juanru Li, Siqi Ma - SANER 20

• Verification of Ethereum Smart Contracts: A Model Checking Approach, Tam Bang,
Hoang H Nguyen, Dung Nguyen, Toan Trieu, Tho Quan - IJMLC 20

• Smart Contract Repair, Xiao Liang Yu, Omar Al-Bataineh, David Lo, Abhik
Roychoudhury - TOSEM 20

• A Comparative Evaluation of Automated Analysis Tools for Solidity Smart Contracts,

Zhiyuan Wei, Jing Sun, Zijian Zhang*, Xianhao Zhang, Meng Li*, Liehuang Zhu

View publication stats

https://www.researchgate.net/publication/339354823_ReJection_A_AST-Based_Reentrancy_Vulnerability_Detection_Method
https://arxiv.org/pdf/1911.00570.pdf
https://wcventure.github.io/FuzzingPaper/Paper/SANER20_ETHPLOIT.pdf
http://www.ijmlc.org/vol10/977-AM0059.pdf
https://arxiv.org/pdf/1912.05823.pdf
https://arxiv.org/pdf/2310.20212
https://www.researchgate.net/publication/379838925

